
1

Introduction: Threads in Java

• Thread class
– run, start methods
– yield, join
– sleep

• Synchronization
– synchronized methods & objects
– wait/notify/notifyAll
– conditions

2

java.lang.Thread
• Two techniques to create threads in java
• 1) implementing the Runnable interface

– The Runnable interface should be implemented by any
class whose instances are intended to be executed by a
thread. The class must define a method, called run,
with no arguments.

– invoke Thread constructor with an instance of this
Runnable class

– See pages 162 and 164 in text for an example
• 2) extending Thread

– Define a subclass of java.lang.Thread
• Define a run method

– In another thread (e.g., the main), create an instance of
the Thread subclass

• Then, call start method of that instance

3

Example 1

• Create 2 threads from the Main, then start
them

• Threads will be instances of different thread
sub-classes

4

class MyThreadA extends Thread {
public void run() { // entry point for thread

for (;;) {
System.out.println("hello world1");

}
}

}

class MyThreadB extends Thread {
public void run() { // entry point for thread

for (;;) {
System.out.println("hello world2");

}
}

}

public class Main1 {
public static void main(String [] args) {

MyThreadA t1 = new MyThreadA();
MyThreadB t2 = new MyThreadB();
t1.start();
t2.start();
// main terminates, but in Java the other threads keep running
// and hence Java program continues running

}
}

hello world2
hello world2
hello world1
hello world2
hello world1
hello world2
hello world2
hello world1
hello world1
hello world1
hello world1
hello world2
hello world1
hello world1
hello world2
hello world2
hello world1
hello world1
hello world2
hello world2
hello world1
hello world1
hello world2 5

6

Example 2
• Create 2 threads from the Main, then start

them
• Threads will be instances of the same thread

sub-class
• Use argument of constructor of new thread

class to pass text name of thread, e.g.,
“thread1” and “thread2”
– Data member provides different data per thread

(i.e., then name)
– A data member can also be used to share data

7

class MyThread extends Thread {
private String name;
public MyThread(String name) {

this.name = name;
}
public void run() {

for (;;) {
System.out.println(name + ": hello world");

}
}

}

public class Main2 {
public static void main(String [] args) {

MyThread t1 = new MyThread("thread1");
MyThread t2 = new MyThread("thread2");
t1.start(); t2.start();

}
}

thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread2: hello world

8

See the variation in
output: This variation
in output is called a
“race condition” (often
race conditions are
bugs in programs)

Application: java.lang.Thread

• public static void yield();
– Method of java.lang.Thread
– Thread gives up CPU for other threads ready to run

9

10

class MyThread extends Thread {
private String name;
public MyThread(String name) {

this.name = name;
}
public void run() {

for (;;) {
System.out.println(name + ": hello world");
yield();

}
}

}

public class Main3 {
public static void main(String [] args) {

MyThread t1 = new MyThread("thread1");
MyThread t2 = new MyThread("thread2");
t1.start(); t2.start();

}
}

11

Some Output
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world
thread2: hello world
thread1: hello world

Notice the alternation
of output

12

More Thread Members: join
• public final void join();

MyThread t1 = new MyThread("thread1");
t1.start();
t1.join();

– Wait until the thread is “not alive”
– Threads that have completed are “not alive” as are

threads that have not yet been started

• public static void sleep (long millis) throws InterruptedException;
– Makes the currently running thread sleep (block) for a period of time
– The thread does not lose ownership of any monitors.
– InterruptedException - if another thread has interrupted the current thread.

13

Join Example

Some output

…
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
hello world1
Thread is done!

14

Thread State
• public Thread.State getState()

– Returns the state of this thread. This method is
designed for use in monitoring of the system
state, not for synchronization control

16

Thread Scheduling in Java
• public final void setPriority(int newPriority);
• public final int getPriority();
• public static final int MAX_PRIORITY

// on my system: 10; Mac OS X 2/21/05
• public static final int MIN_PRIORITY

// on my system: 1; Mac OS X 2/21/05

• Scheduling
– Priority inherited from parent, but can be changed
– Higher priority threads generally run before lower

priority threads
– For equal priority threads, best to call yield()

intermittently to handle JVM’s with user-level
threading (i.e., no time-slicing)

Sharing Data Across
Java Threads

• Consider the situation where a parent thread
wants to pass data to a child thread
– e.g., so that child can change data and parent

can have access to the changed data
• How can this be done?
• Can pass an object instance to the child

thread constructor, and retain that object
instance in a data member

17

18

class SharedData {
public int a = 0;
public String s = null;

public SharedData() {
a = 10;
s = "Test";

}
}

class MyThread extends Thread {
private SharedData m_data = null;

public MyThread(SharedData data) {
m_data = data;

}

public void run() {
for (;;) {

m_data.a++;
}

}
}

19

public class Main5 {
public static void main(String [] args) {

SharedData data = new SharedData();
MyThread t1 = new MyThread(data);
t1.start();

for (;;) {
data.a--;

}
}

}

If we have multiple threads accessing this
shared data, how do we synchronize access to
ensure it remains in a consistent state?

Basic Tools for Synchronization
in Java

• Synchronized methods
• Synchronized objects
• Methods

– wait
– notify
– notifyAll

• Also should talk about condition variables
in Java 20

21

Synchronized Methods: Monitors

• synchronized keyword used with a method
– E.g.,

public synchronized void SetValue() {
// Update instance data structure.
// When the thread executes here, it exclusively has the monitor lock

}
– Provides instance-based mutual exclusion

• A lock is implicitly provided-- allows at most one thread to be executing
the method at one time

– Used on a per method basis; not all methods in a class have to
have this

• But, you’ll need to design it right!!

Difference: Synchronized vs.
Non-synchronized

• Class with synchronized methods
– How many threads can access the methods of

an object?
• Class with no synchronized methods

– How many threads can access the methods of
an object?

22

Example

• Construct a queue (FIFO) data structure that
can be used by two threads to access the
queue data in a synchronized manner
– Producer thread: Adds data into queue
– Consumer thread: Removes data from queu

• For one instance of the queue, only one
thread should be able to modify the queue,
i.e., we should have mutual exclusion on
methods of one instance of the queue

23

24

25

26

Let’s run this and see what
happens

27

28

Ooops! What happened?

29

• This implementation has a problem! The
Consumer prints, which slows it down a
LOT, and thus the producer is faster, and
thus the producer fills up the queue, and
causes heap space to run out!!

• This is a kind of race condition
– The results depend on the speed of execution of

the two processes
• Would like to alter this program to limit the

maximum number of items that are stored in
the queue.

• Goal: have the producer block (wait) when
the queue reaches some fixed size limit 30

Also

• Better to have the Remove block (wait)
when the queue is empty

• I.e., presently we are doing a “busy wait”
(also called polling)

• We are repeatedly checking the queue to see
if it has data, and using up too much CPU
time doing this

31

wait method (see also
java.lang.Object)

• Does a blocking (not busy) wait
• Relative to an Object

– E.g., Used within a synchronized method
• Releases lock on Object and waits until a

condition is true
– Blocks calling process until notify() or

notifyAll() is called on same object instance (or
exception occurs)

• Typically used within a loop to re-check a
condition

• wait(long millis); // bounded wait 32

33

notify and notifyAll methods (see
also java.lang.Object)

• Stop a process from waiting– wakes it up
• Relative to an Object

– E.g., Used within a synchronized method
• Wakes up a blocked thread (notify) or all

blocked threads (notifyAll)
– One woken thread reacquires lock; The

awakened thread will not be able to proceed
until the current thread relinquishes the lock on
this object.

• For notify, if more than one thread available
to be woken, then one is picked

Typical use of wait within a
synchronized method

while (condition not true) {
try {

wait(); // this.wait();
} catch {

System.out.println(“Interrupted!”);
}

}
// After loop, condition now true & thread
// has monitor lock for this object instance

35

Example

• Extend the example from before:
– a queue (FIFO) data structure that can be used

by two threads to access the queue data in a
synchronized manner

• This time, use wait & notify to block the
Producer thread if the queue is full, and
block Consumer thread if the queue is
empty

Re-checking Monitor Conditions
• wait/notify

• After receiving a notify, a process waiting on a
condition may not be next to gain access to
monitor (to the data)
• E.g., occurs if notifyAll used

• Process may need to re-check the conditions
upon which it was waiting

• An “awakened thread will compete in the usual manner
with any other threads that might be actively competing to
synchronize on this object; for example, the awakened
thread enjoys no reliable privilege or disadvantage in being
the next thread to lock this object.”
(http://java.sun.com/j2se/1.5.0/docs/api/) 36

37

InterruptedException

• Wait can be woken by the exception, I.e.,
for reasons other than notify

• Sometimes this can be handled as part of
the process of re-checking conditions

• There is another way to handle it too

38

Exception in Wait

// In a synchronized method

// check your condition, e.g., with a semaphore
// operation, test “value” member variable

if /* or while */ (/* condition */) {
boolean interrupted;
do {

interrupted = false;
try {

wait();
} catch (InterruptedException e) {

interrupted = true;
}

} while (interrupted);
}

Only allows release
from wait caused by
notify or notifyAll

39

Synchronized Blocks

• Synchronized methods
– Implicitly lock is on this object

• Synchronized blocks
– lock on an arbitrary, specified object
– similar to condition variables in monitors
– but need to have a synchronized block around

an object before wait/notify used
– use wait/notify on the object itself

Syntax

• For example, this allows you to synchronize
just a few lines of code, or to synchronize
on the basis of an arbitrary object

40

synchronized (object) {
// object.wait()
// object.notify()
// object.notifyAll()

}

Another Example
• Suppose in a Global File Table, suppose

that per open file you keep an
Object Lock;
• you can then use a synchronized block to

make sure that some operations only get
done in a mutually exclusive manner on the
file

synchronized (file[i].Lock) {
// if we get to here we’re the only one
// accessing file i

}
41

Conditions
• Java interface:

– http://download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/Condition.html

• Let’s you have multiple independent wait
events for a monitor

• So, have one monitor lock, but can wait
within the monitor for more than one reason

• Use await/signal (not wait/notify)
• Also: Must have explicit lock (don’t use

synchronized keyword)
• Lock monitor as very first thing you do
• Unlock monitor as very last thing you do

42

43

Agent Simulation

• Could use synchronized blocks to accomplish
synchronization on the environment cells

synchronized (cell) {
// check to see if agent can consume food
// or socialize depending on what the goal
// of the agent is

}

44

Example

• Implement Semaphore class with Java
synchronization
– Provide constructor, and P (wait) and V (signal)

methods
– Use synchronized methods

• and Java wait/notify

• Note
– Java implements Semaphores—

45

java.lang.Runnable Interface

• The Runnable interface should be implemented by
any class whose instances are intended to be
executed by a thread. The class must define a
method of no arguments called run.

• Known Implementing Classes:
– AsyncBoxView.ChildState, FutureTask,

RenderableImageProducer, Thread, TimerTask
• From http://java.sun.com/j2se/1.5.0/docs/api/
• Runnable can be used to create threads

46

Example

• Two producer threads (A & B), and one
consumer thread

• Consumer needs one type of item from
thread A and one type of item from thread B
before it can proceed

• Use a loop and a wait and recheck
conditions in the consumer

47

48

49

50

Blocking
Remove

// only 1 thread can use Add or Remove at a time
class SynchQueue {

public LinkedList<Integer> l;

SynchQueue () {
l = new LinkedList<Integer>();

}

public synchronized void Add(Integer elem) {
l.addLast(elem);
notify();

}

public synchronized Integer Remove() {
while (l.size() == 0) {

try {
wait();

} catch (InterruptedException e) {
System.out.println(“ERROR: Thread interrupted!”);

}
}

return l.removeFirst();
}

}

51

